

2021 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

CYBERSECURITY OF GROUND SYSTEMS TECHNICAL SESSION
AUGUST 10-12, 2021 - NOVI, MICHIGAN

Advanced Cyber Testing With Virtualization

William Wysocki1, Greg Price1, Steve Friedman1, Adrianne Conage1

1Raytheon CODEX, Annapolis Junction, MD

ABSTRACT

The growing sophistication and emergence of widespread cyber threats
today has driven the DOD to place Cyber Resiliency requirements on new and
legacy defense systems. The DOD has recently garnered a massive defensive
DevSecOps effort aimed at defining structured practices to unify software (Dev),
Security (Sec), and operations (Ops) under the umbrella of more OpSec-driven
engineering practices. According to the DOD DevSecOps practicum referenced in
this document [1], “Practicing DevSecOps provides demonstrable quality and
security improvements over the traditional software lifecycle, enabling application
security, secure deployments, and secure operations in close alignment with
mission objectives.”

Modern systems often contain greater networking capability and are
therefore more exposed to cyber-threats. Legacy systems were often conceived
prior to the field of cyber warfare maturing, resulting in unpatched potential
vulnerabilities that could be exploited through trusting computing relationships.
Each type of system presents different Cyber Resiliency requirement challenges.
This paper explores the power and flexibility of employing virtualization
technology as a tool for cyber-focused testing on both new and legacy defense
systems across the DOD.

Citation: William Wysocki, Greg Price, Steve Friedman, Adrianne Conage, “Advanced Cyber Testing With
Virtualization”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS),
NDIA, Novi, MI, Aug. 10-12, 2021.

1. Introduction

Cyber Resiliency has matured from a passing concern to a
requirement driver for multitudes of complex defense systems
across the DOD. The sophistication of even moderate cyber
threats today requires targeted, multifaceted solutions to
address these problems in their entirety. Unfortunately, the
development lifecycle, particularly for established legacy
systems, is often riddled with unforeseen complexities that
make safe modernization slow and resource intensive. It has
become common for developers to extend legacy systems by
networking them with modern technologies. By doing so,
legacy systems have become exposed to modern threats.

Defense systems are commonly created on specialized
hardware, making effective cyber testing difficult due to
limited availability. System Integration Labs, or SILs,
perform the bulk of requirements testing today, verifying
correct software behavior of both hardware and software.
These SILs are often saturated with tasking during
development, performing regular gauntlets of validation
testing. To complicate matters, cyber testing uses
techniques that may expose hardware to risk of damage and
corruption, a risk that many expensive SILs cannot afford.
Risk aversion and limited availability greatly limit the ability
to perform effective cyber testing.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Advanced Cyber Testing With Virtualization, Wysocki, et al.

 Page 2 of 10

Virtualization provides numerous benefits that augment
traditional testing infrastructure. Traditional infrastructure is
constrained by the number of physical systems available to
conduct testing activities. Tests run on real hardware require
careful preparation, validation, and sanitation of test pipelines
at conclusion ensure integrity and consistency of results many
test cases. This cycle of testing can be immensely time
consuming, ultimately limiting the scope, throughput, and
frequency of tests that can be run within a designated time
frame. Virtualization, on the other hand, allows testers and
developers to recall known good states from an existing
archive, reducing test times, and ensuring the integrity,
repeatability and validity of results without the constraints of
real hardware.

Virtualization provides data collection and analysis
opportunities that are impossible on physical hardware.
Snapshots of a hardware state in a virtual environment can be
manipulated, deterministically replayed, and analyzed after
the system has crashed. Instead of a reviewing a stack traces
and memory dumps, a full replay of execution can be saved.
This analysis capability is a boon to developers, accelerating
error analysis and triage. Virtualization helps standardize
these tools and techniques across all virtualized systems,
enabling reuse across projects and integration with standard
commercial tools.

In the following sections, we will describe how
virtualization can greatly aid in improving cyber resiliency
across DOD platforms. It breaks the constraints of physical
hardware access and eliminates the risk of accidentally
damaging or corrupting expensive SILs. It provides greater
introspective capabilities than hardware and can be integrated
with industry standard tools. Virtualization can be a powerful
tool in the effort to reduce cyber risk in today’s modern
networked environment.

2. Background
2.1. Cyber Resilience

Cyber Resiliency is defined as the ability to
anticipate, withstand, recover from, and adapt to
adverse conditions, stresses, attacks or compromises
on systems that use or are enabled by cyber
resources. Systems with this property are
characterized by having security measures “built in”
as a foundational part of the architecture and design.
Moreover, these systems can withstand cyber-
attacks, faults, and failures and can continue to
operate even in a degraded or debilitated state,
carrying out mission-essential functions, and
ensuring that the other aspects of trustworthiness (in
particular, safety, and information security) are
preserved [2].

Mission-critical systems face an increasing threat from
persistent malicious actors with considerable resources and
advanced technologies tailored to discover software
vulnerabilities. However, according to the GAO [3], “In
operational testing, DOD routinely found mission-critical
cyber vulnerabilities in systems that were under development,
yet program officials GAO met with believed their systems
were secure.” This has led DOD to place resiliency
requirements on new system development and order reviews
of legacy systems for cyber resiliency.

Developing cyber-resilient systems requires incorporating
cyber-testing technologies early in development, not after the
system has been fielded. Failing to engage in cyber testing
during development, when subject matter expertise is at its
peak, significantly increases resource consumption and task
difficulty when assessing and mitigating software errors.
Delaying cyber testing beyond requirement testing,
integration, and fielding compounds this issue further.
Legacy systems suffer immensely from insecure development
conventions due to being conceived prior to modern
technological trends in networking and connectivity;
organizations responsible for maintaining these systems often
struggle to understand their security posture as a result.
Legacy systems can therefore be regarded as an ideal case
study for demonstrating the near impossibility of addressing
security after-the-fact.

2.2. Cyber Testing

The NIST Cybersecurity framework [4] presents
foundational principles behind the NIST Secure Software
Development Framework (SSDF) [5], which provides a
framework for integrating security requirements into every
step of software development. It states that, when software is
unavailable and must be produced, “[testing] executable code
to identify vulnerabilities and verify compliance with security
requirements” shall occur. The SSDF states projects shall
“[integrate] dynamic vulnerability testing”, “[use] automated
fuzz testing”, and “[document] the root cause to each
discovered issue”.

Dynamically testing embedded or system-level software
requires running the compiled software on the target
hardware, or in a representative example of that hardware (for
example, developer kits, SIL, or emulator). Dynamic cyber
testing, or “fuzzing”, is typically some form of unstructured
test without a well-defined end-state or testing period. This
form of testing fundamentally differs from standard
requirements testing, as it explicitly attempts to cause
unintended behavior. It is extraordinarily difficult to foresee
emergent properties of complex systems, which is why
unstructured testing has been effective at discovering
vulnerabilities even when a system has strict requirements-
based testing.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Advanced Cyber Testing With Virtualization, Wysocki, et al.

 Page 3 of 10

What is not discussed by NIST is the scale and introspection
capabilities required to perform effective dynamic testing.
Hardware-based execution environments (developer kits,
SILs) are not scalable, nor do they provide the introspection
faculties required to execute effective dynamic testing
campaigns. This means existing test infrastructure is ill-
suited to meet new cyber-testing requirements.

Virtualization provides a clear path to resolve these issues.

2.3. Virtualization
Virtualization is the creation of a “virtual” representation of

a system or hardware that can execute software as if it were
on the real system. For embedded systems, such as many
DOD platforms, this involves using an emulator or hypervisor
to execute system software on desktop or server
environments. Virtualization platforms provide three key
features that real hardware does not.

First, it provides greater system availability when real
hardware is expensive, precious, or simply unavailable. As
legacy systems age, it is common to experience hardware
scarcity issues as components cease being manufactured.
Systems under development often experience hardware
scarcity issues due to cost of prototypes, manufacturing
capacity, and the need for SILs. Virtualization makes
execution environments available to all developers for testing
on commodity hardware, such as desktops.

Second, virtualization technologies provide interposition
capabilities that are unavailable on real hardware. This can
include interposing upon execution for coverage collection
and intercepting communications between internal
components. This additional interposition is often required
for advanced cyber-testing techniques, such as coverage-
driven fuzzing and dataflow analysis.

Finally, virtualized systems are scalable. Scaling embedded
system hardware for testing represents a severe maintenance
and cost penalty for programs. Effective cyber testing
requires running millions of tests per second, making real
hardware a poor choice for both cost and practical reasons.

The following sections discuss how virtualization can be
leveraged to perform effective cyber testing and achieve
greater cyber resilience.

3. Improving Cyber Resiliency

The current state of cyber resiliency for DOD systems has
been extensively documented. The GAO report [3] issued in
October 2018 extensively covers the current state of cyber
readiness in defense systems, and the root causes of the
underlying failures.

Multiple factors contribute to the current state of
DOD weapon systems cybersecurity, including: the
increasingly computerized and networked nature of
DOD weapons, DOD’s past failure to prioritize

weapon systems cybersecurity, and DOD’s nascent
understanding of how best to develop more cyber
secure weapon systems. Specifically, DOD weapon
systems are more software and IT dependent and
more networked than ever before. ... Nevertheless,
until recently, DOD did not prioritize cybersecurity
in weapon systems acquisitions [3].

There is a growing awareness of the need to standardize
cybersecurity assessment practices for software products—
much in the same way rigorous security standards currently
are applied to software deployed on real-time operating
systems (RTOS) in the avionics and automotive industries. As
a case study, airborne platforms must now adhere to a set of
rigorous testing standards defined by the DO-178B/C [6]. A
growing number of federal certifications and testing standards
have begun emphasizing security testing as a criterion for
being awarded prestigious operational compliance levels.
One such set of standards includes the Common Criteria [7].

The Common Criteria enable an objective
evaluation to validate that a particular product or
system satisfies a defined set of security
requirements [8].

Recently, there have been notable strides in identifying key
components for governing more comprehensive system
cybersecurity assessment and validation activity. To this aim,
the DOD has begun to formalize practices for cybersecurity
testing. The DOD has outlined these practices in the DOD
Cybersecurity Test and Evaluation Guidebook (T&E).

The purpose of this guidebook is to promote data-
driven, mission-impact-based analysis and
assessment methods for cybersecurity and
evaluation (T&E), and to support assessment of
cybersecurity, system cyber survivability, and
operational resilience within a mission context by
encouraging planning for tighter integration with
traditional system T&E [9].

 The DOD publishes a yearly Director, Operational Test and
Evaluation [7] (DOT&E)—a report for Congress providing an
on-going register of approved operational test plans as part of
the joint oversight program. It is evident from the DOT&E
report that the DOD continues to bolster its defensive posture
by expanding its list of cybersecurity operational testing
initiatives.

Despite these requirements, it remains common to engage
in cyber testing after development, as opposed to during
development. The question is, what is causing this cyber
testing gap?

3.1. The Cyber Testing Gap

As noted previously, a critical gap in DOD cyber testing is
that penetration and vulnerability assessments are not
performed early enough in the product lifecycle. Many
programs wait until a formalized test and evaluation (T&E)

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Advanced Cyber Testing With Virtualization, Wysocki, et al.

 Page 4 of 10

phase to perform these important tasks—by which time it is
too late for a developer to refocus efforts on cyber mitigation
activities.

Cyber testing employs strategies that differ from traditional
software development processes but require a similar time
investment (from design to deployment) that is often not
factored into the total software lifecycle. Cyber testing is a
path tailored toward improving cyber resiliency and should
therefore employ the same tactics an attacker would use to
compromise a system in the wild. Effective cyber testing
should be iterative in nature. The DOD Cybersecurity Test
and Evaluation Guidebook [9] defines a series of phased
iterations for conducting cybersecurity verification analysis
of system attack surfaces.

The goal of cybersecurity T&E is to identify and
mitigate exploitable system vulnerabilities
impacting [the] operational resilience of military
capabilities before system deployment to include
safety, survivability, and security. Cybersecurity
T&E Phases 1 and 2 are the essential first steps of
the T&E planning process that support system
design and development. Phase 1 and 2 should be
performed in a cyclic fashion and repeated
throughout each phase to ensure a thorough
understanding of the requirements and any changes
within the attack surface [9].

This Cybersecurity T&E Guidebook also highlights the
importance of engaging cybersecurity professionals at the
inception of a product lifecycle as a means of understanding
the scope of threats and mitigation strategies to govern
subsequent design decisions. By engaging a cybersecurity
specialist early, it is easier to generate a custom system profile
for conducting future cybersecurity audits, ultimately yielding
more comprehensive and intelligent tests around potentially
high-risk and critical features of a product. Lack of
cybersecurity expertise, engagement, and planning during the
system design phase is another notable gap in many
development efforts.

While the need to test may seem obvious, cyber testing
carries requirements that may appear counterproductive to
optimal system development in a traditional environment.
Cyber testing increases use of scarce and expensive
laboratory resources, and may represent a destructive risk.

With constrained hardware resources, testing becomes a
burden to developers, increasing development time and cost.
When dependent on a SIL, trade-offs are made to balance time
and effort spent in functional testing versus cyber testing due
to hardware scarcity. These trade-offs widen the cyber testing
gap. It is simply impractical to achieve scaled testing for
embedded systems with real hardware, and this puts cutting-
edge cyber testing techniques out of reach.

Destructive testing is a software assessment method that
involves purposefully interacting with a system using

malformed inputs with the intent of discovering errors or
failure states. In some cases, destructive testing carries the
very probable risk of permanently damaging a target system
or hardware. This risk is often unacceptable in cases where
hardware resources are constrained.

To achieve effective cyber testing during system
development, we must solve the problems of execution
environment availability, enable testing at scale, and make
offensive vulnerability research methods accessible to system
developers. This is exceptionally difficult for legacy systems.

3.2. Legacy Systems in a Cyber World

There are two classes of systems struggling with cyber
security requirements today, fielded (legacy) systems and
systems under active development. Legacy systems may date
back many decades, before the birth of cyber security as a
professional field. Many of these systems were developed
without security requirements and have significant flaws ripe
for exploitation by a malicious actor. Legacy systems
undergoing cyber testing have traditionally done so after
deployment.

The question is: how do we test legacy embedded systems
whose hardware is no longer manufactured (or is otherwise
unavailable) and/or does not scale? As we discuss in
section 4, cyber testing requires significant scale and
interposition capabilities, neither of which may be possible
with legacy hardware. By creating virtual representations of
these embedded devices, we circumvent the issue of hardware
availability, making the device available at any required scale
(desktop, range, cloud, etc.).

This solution alone, however, is not a silver bullet.
Emulations are expensive to produce, and the cost must be
weighed against the expected lifetime of the underlying
system. This is especially true of legacy systems, whose
schematics and source code may be inaccessible. If the
system is scheduled for replacement soon, it may be more cost
effective to increase monitoring rather than spend a year
creating a virtualization. We discuss this challenge in
section 6.1 (Reducing Cost of Virtualization).

3.3. Virtualization and the Future of Secure

System Development
Embedded system developers often lack sufficient

execution environments to execute the requirement,
compliance, and security testing needed to truly assess a
platform’s security posture. These developers rely heavily on
non-representative environments, such as cross-compiling
software for desktop environments. While cross-compilation
may satisfy functional testing requirements, it may miss bugs
related to the production architecture and hardware.

In some cases, developers may have access to hardware
developer kits (HDK) or SILs. When HDKs are available,

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Advanced Cyber Testing With Virtualization, Wysocki, et al.

 Page 5 of 10

testing may occur at the desktop scale, but not at an acceptable
scale for security testing. SILs compound this limitation,
forcing many developers to share access to common hardware
for requirements testing. However, SIL test environments
will never be completely displaced by virtualization.
Siddapureddy [10] explains why many testing requirements
demand extremely accurate simulation and structural
requirements to determine the survivability of a system in
adverse operational conditions. This paper therefore
constrains its discussion of SIL test engineering to aspects of
software assurance testing and is not suggesting replacement
of SILs with virtualization platforms.

 Leveraging virtualization in the early phases of system
development serves as a major force multiplier, both for
velocity of system development and for cyber resiliency
requirements. Virtualization makes embedded systems
available at the desktop for rapid and scaled test development.
This provides developers the chance to build fuzz testing
frameworks when key resources, such as system experts, are
readily available.

In the following section, we discuss why this type of
desktop and scaled availability is critical for test development.

4. Effective Cyber Testing

Threat actors are constantly seeking new attack surfaces and
vulnerabilities. Every component that communicates with
external systems represents a risk, as it provides a way for
external actors to affect internal operation. These actors often
leverage fuzzing as a way of exploring attack surfaces and
discovering vulnerabilities, in hopes of providing access
vectors for their attacks.

Ransomware, for example, requires system access to
perform its attack. In recent years, attackers have leveraged
ransomware to attack financial institutions, government
entities, educational systems, and critical infrastructure.
Without a system access vector, these attacks would be
difficult to execute. While many attacks use access vectors
such as phishing, more sophisticated actors may use
undisclosed (zero-day) code execution and privilege
escalation vulnerabilities to achieve system access. It is
exactly these types of vulnerabilities developers should
defensively fuzz for during development.

Defensive fuzzing is a proven method that industry leaders
such as Microsoft are using to secure their software. SAGE,
a tool that uses fuzzing at scale, has proven results. SAGE
found approximately one-third of all the bugs discovered by
file fuzzing during the development of Microsoft’s
Windows 7. Finding these bugs has saved Microsoft millions
of dollars, and has saved the world time and energy by
avoiding expensive security patches to more than one billion
PCs [11]. Fuzzing remains one of the most effective tools in
the vulnerability researcher’s toolkit for assessing the

approximate stability and engineering quality of a piece of
software.

4.1. Cyber-Testing-Driven Requirements

Fuzzing is the act of randomly (or pseudo-randomly)
exploring the state of a program with generated input (as
opposed to known or structured input). Fuzzers require
significant scale (millions of tests per second) and feedback
(code coverage data) to be effective. American Fuzzy Lop
(AFL), for example, uses compile-time coverage faculties for
some software, and can use a special emulator mode that is
compatible with QEMU. AFL has been used across the
industry for dynamic security testing and is considered one of
many industry-standard tools.

If we are to apply fuzzing techniques during embedded
system development, new requirements must be placed on the
overall development process. These requirements are derived
from common fuzzing methods and industry standard fuzzing
frameworks. The most common problem with applying
industry standard tooling is availability of the underlying
execution environment.

While AFL can be used with QEMU (an open-source
emulator), there is no central team or company responsible for
providing developers a QEMU emulator for their platform.
To complicate the matter, the open-source community is often
wary of working with government-adjacent entities.

In addition, while commodity hardware, such as x86, may
have extremely robust onboard hardware-based virtualization
and introspection faculties, embedded systems (often ARM-,
PPC-, or MIPs-based) simply do not. Lacking these faculties,
tooling becomes dependent on whatever emulator is
available—and most simply do not implement the
introspective capabilities required to meet cyber testing
needs.

From this, we derive three major requirements for a
virtualization platform truly suitable for cyber-focused
testing. First, it must by scalable. Second, it must provide
sufficient introspection. Finally, maintenance must be offered
as a service, as opposed to being reliant on open-source
communities.

4.2. Scalability of Virtualization-Based

Testing
We define scaled testing in three ways:
• Horizontal Scale – Testing code across many system

configurations.
• Vertical Scale – Testing code across many inputs or

interactions.
• Distributed Scale – Testing distributed computations

dependent on many components.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Advanced Cyber Testing With Virtualization, Wysocki, et al.

 Page 6 of 10

In this section we discuss how virtualization can enable each
form of testing.

Horizontal Scale

Effective testing requires validating software requirements
and behavior on a wide array of hardware and software
configurations. For example, a cell phone application may
not display identically on two separate phones with different
screen sizes. When stakes are low, as is the case with phone
applications, cursory testing across a small sample of the
many different configurations may suffice.

When stakes are high, as is the case with defense system
development, the number of hardware and/or software
configurations may be overwhelming to test. Attempts to test
all possible runtime configurations is an oppressive
requirement and may negatively impact vertical scale testing
efforts.

Virtualization makes extensive horizontal testing possible
by alleviating hardware availability concerns, and by
reducing the time it takes to reconfigure a system under test.
For example, reconfiguring a system may simply involve
loading a saved state, as opposed to requiring a full hardware
reboot.

Vertical Scale

Effective fuzzing campaigns can require execution
performance in terms of millions of tests per second.
According to Wei Shiyi [12], on evaluating fuzz testing, “the
ultimate measure of a fuzzer is the number of distinct bugs
that it finds.” Some campaigns may require billions of tests in
total to identify just a single vulnerability. Hardware-based
developer kits and SILs simply cannot support this level of
vertical scaling. Figure 1 shows a chart generated from a real
fuzzing campaign run against a virtualized flight system
interface that plots the number of tests run and crashes
discovered.

Figure 1. Virtualized flight system fuzz test crash report

Each test may require the system be fully reset to a known-

good state. Hardware can often take minutes to fully restart—
greatly limiting test throughput. In this case, a one-minute
restart cycle would have caused this fuzz campaign to have
taken nearly 1000 hours. Instead, executing the tests serially

on one piece of hardware, rather than in parallel on many,
took only 35 minutes. Acquisition of hardware to achieve
sufficient vertical scale is simply infeasible due to cost,
availability, and difficulty of maintaining such a hugely
complex laboratory environment.

As previously discussed, lacking a representative execution
environment at the desktop limits a developer’s ability to
design and execute scalable unstructured test plans.
Virtualization can be deployed at the desktop for test
development, and to cloud infrastructure for vertical
scaling—limited only by the availability of commodity
hardware and server rack space.

Distributed Scale

Modern electronic devices are often complex systems of
systems with many discrete compute elements working in
parallel to accomplish a goal. Cell phones integrate many
commodity components and co-processors to achieve
asynchronous computation of data from many external
sources (for example, cell tower, Wi-Fi, and touch screen).
Similarly, embedded systems often contain an array of co-
processors responsible for computing discrete tasks. A fighter
jet may have one computer for the cockpit display, another for
GPS navigation, and yet more to control weapons systems.

It has become increasingly common for those components
to be highly reliant on each other, distributing tasks and
executive controls to discrete components of the system of
systems. This is good for redundancy and reliability but
makes effective dynamic testing outside a SIL extraordinarily
difficult. To independently develop these subsystems,
developers often produce low-fidelity simulators of missing
components—such as scripts that simply replay captured
traffic rather than emulate the real behavior.

Low-fidelity simulators lack the ability to replicate true
real-world situations, and as a result, effective horizontal
scale testing of an individual component becomes infeasible.
A virtualized system allows components to be initialized
realistically, providing developers an environment to produce
meaningful test results.

This topic will be further discussed in section 5 (Testing
System of Systems Under Virtualization).

4.3. Interposition and Feedback Fuzzing

Under Virtualization
Most secure development frameworks do not specifically

address how to design or run effective fuzz tests. Even the
NIST SSDF remains vague regarding the definition of
“effective dynamic testing”. The NIST Information Security
guide on Practical Combinatorial Testing [13] comes closest
to presenting a comprehensive discussion using the
combinatorial testing strategy.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Advanced Cyber Testing With Virtualization, Wysocki, et al.

 Page 7 of 10

Fuzzing can be considered a class of combinatorial testing
that exercises boundary conditions using random inputs.
“The key advantage of combinatorial testing derives from the
fact that all, or nearly all, software failures appear to involve
interactions of only a few [predictable] parameters.” [13]

Most secure development frameworks are not designed to
be comprehensive one-size-fits-all Swiss army knives. Most
frameworks are geared to solving a very narrow and
specialized subset of cases within a problem space, or even
more disappointingly, simply include a requirement to “use
fuzz testing”. In this section we explore what interposition is
required to achieve effective fuzz testing.

Interposition

System interposition is the ability to intervene on a given
computational task. For example, software-based code
coverage systems inject routines at the beginning of each sub-
routine in a piece of software. Hardware-based coverage is
accomplished via hardware side channels that detect and
record program state-transitions.

Many developer kits provide some level of introspection
capability (such as basic debugging tools), but rarely provide
the flexible runtime introspection tools required to leverage
most modern vulnerability analysis techniques.

Virtualization platforms provide a solution to this problem,
because introspection can be baked into the virtualized model
software. Emulators translate instructions from one ISA to
another (for example, PPC to X86). During this translation
process, the emulator may inject additional machine code,
which fuzzers can leverage to provide feedback in the form of
code coverage and data-flow tracking. Despite emulation
running slower than real hardware, emulations can be scaled
to deliver a non-linear increase in overall test throughput.

Code Coverage

Many safety-critical embedded systems must meet
government certification and compliance testing standards.
To achieve certification, testing must generate artifacts that
prove the system conforms to the standards. One certification
requirement dictates that all code must execute and behave
according to a well-defined test plan. In other words, the
artifacts must show complete code coverage.

Many test efforts entail developing custom branch trace
instrumentation to generate these coverage artifacts. Using
instrumented builds for testing presents many risks and
disadvantages in practical applications, however.
Instrumentation causes significant overhead, often
contributing to unnecessary program bloat to the extent that
hardware-based tests fail to execute or run to completion—
ultimately decreasing confidence in the integrity of the
results.

In addition, instrumentation may result in code execution
bottlenecks, slow-downs, or race conditions that interrupt

normal operation not otherwise present on non-instrumented
builds. For real-time embedded systems, timing concerns can
affect the stability and health of a system. Without reliable
normal operation, test results become unreliable.

Virtualization-based execution environments can provide
flexible branch tracing systems that can be tailored to achieve
the best performance-introspection dynamic possible. Many
virtualization platforms, such as QEMU and DejaVM,
provide an instruction instrumentation framework that
developers can apply in a more flexible and robust manner
than hardware-provided faculties. In addition, a virtual
platform can control the perception of time by software and
can omit the overhead caused by code coverage faculties from
its view. This level of control delivers both the introspection
and stability required to ensure the integrity of test results.

Feedback Fuzzing

Most industry-standard fuzzers define “feedback” as some
form of execution-state information associated with a
particular system input. Branch tracing is one of the primary
feedback data sources used by fuzzers. This information
associates input mutation with program flow deviations.
Embedded hardware rarely provides robust branch tracing
capabilities, and commodity hardware tracing faculties often
come with severe limitations that prevent vertical scalability.

Some virtualization platforms provide coverage systems
that can greatly simplify code coverage collection for fuzz
testing campaigns. Rather than running instrumented builds
for collection, code coverage is collected dynamically using
non-instrumented binary artifacts. This eliminates significant
resource expenditure by development and test teams.

Most hardware-based coverage systems (such as Intel PT)
are not capable of providing runtime feedback for analysis
during execution. The output must be consumed after the test
is completed. Some advanced feedback fuzzing techniques
require runtime analysis, making hardware faculties
unsuitable for use. Emulation-based virtualization platforms,
however, can provide flexible tracing feedback based on the
fuzzer’s requirements.

To be effective at fuzzing, we therefore require a flexible
virtualization system that provides a flexible interposition-
performance configuration. This allows testers to achieve the
greatest feedback generation and vertical scaling possible.

5. Testing System of Systems Under
Virtualization

Expanding cyber resiliency for most relevant DOD
platforms requires the ability to connect multiple virtual
devices together into a system of systems (SoS) configuration.
Traditional integration testing occurs in SILs, and is a critical
part of the development lifecycle. SIL resources are

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Advanced Cyber Testing With Virtualization, Wysocki, et al.

 Page 8 of 10

constrained, comprising primarily physical hardware
connected via control software.

For any test plan to leverage virtualization, it must be
possible to duplicate SIL configurations within a virtual
environment. This may involve modeling some or all
portions of the system in software to replicate system
functionality. Configuration management is also a challenge
in physical SILs. Systems must be restored to known good
states and may require multiple configurations to adequately
support testing across the different software versions.

Under virtualization, SoS configuration becomes more
manageable. Each relevant set of configurations may be
saved and recalled without a complete restart of the system.
Each different configuration can then be loaded as needed,
and testing of each configuration may even occur
concurrently. This reduces test plan complexity, system
maintenance, and the amount of resources consumed
managing, modifying, and synchronizing configurations
across various subsystems prior to staging new tests.

When dealing with SoS configurations, shared state
awareness can be valuable for debugging issues. With
traditional emulators, leveraging introspection features on a
single system within a tightly synchronized environment can
create undesirable side effects. For example, pausing an
embedded device to debug a software issue without proper
regard for system watchdog timers can result in the device
perceiving an error state and timing out prematurely.

In traditional hardware development, you would need to
periodically reset a watchdog timer to allow the embedded
system to continue normally. A virtualized SoS environment
may provide a solution for this problem by controlling all
participating virtual machines (VMs) at once. Under such a
virtualized environment, pausing any one VM within the
system context pauses the entire SoS—retaining a
synchronized state.

By virtue of having global command and control of a cluster
of synchronized VMs, a virtualized SoS makes it possible to
extend other advanced debugging capabilities to all VMs. For
example, it becomes possible to extend deterministic replay
to a networked system of systems. This enables analysts to
quickly explore divergent states or easily follow data as it
travels through the system of systems.

In a real-world application, a virtual SIL could be used to
more effectively scale testing scenarios for various iterations
of firmware across a series of target platforms. In the case of
a vehicular system, for example, each primary component of
the system capable of processing software instructions and
affecting the system state would be modeled according to a
set of technical specifications regarding the hardware and
how the hardware interacts with the software and any
dependent systems. The firmware would then be extracted
from the actual system and used as a guide for refining the
model and identifying any critical functionality that must be

modeled from the original system to ensure a measure of
operational fidelity. A test plan for the model would be
adapted from the system test plan and requirements tests. The
model would then be subjected to a battery of code coverage
tests in the virtual environment to exercise all critical
functions on the platform. The results of these tests would
then be evaluated against a pre-existing set of “known good”
results logged from actual systems with repeatable “known
good” states. This process would ultimately be used as a
validity baseline for proving the behavior of the model itself.

The expectation is that models developed for a virtual SIL
are capable of running at instruction-level accuracy and are
guaranteed to produce the same expected results as an actual
well-behaved system given an identical set of data inputs. As
a proof of concept, cybersecurity engineers have successfully
developed a virtual SIL for exercising the behaviors of
primary flight display (PFD) components as part of a flight
system. As a test, engineers were able to validate correctness
of the model by composing a series unit tests to exercise
functionality and verifying the results against data outputs
from an actual PFD system.

6. Future Work
6.1. Reducing Cost of Virtualization

Developing emulators is a difficult task that requires
hardware knowledge uncommon among most software
development teams. Writing new emulators requires a
dedicated team that is familiar with CPU architecture, drivers,
reverse engineering, and communication protocols.
Advancements are needed to reduce the upfront cost of
emulation and to make emulators more accessible for typical
development teams.

It is certainly possible to apply machine-learning techniques
to emulation model development. However, the platform on
which the models would be build would need to support
complex machine learning (ML) algorithms, allowing the ML
system to modify system configurations to find configurations
that correctly execute the target software.

The size and complexity of the emulated model library also
impacts the cost of modeling. As additional systems and
system components are developed, those components can be
reused across new models. As the corpus of models increases,
the cost to produce new models decreases. Additionally,
virtual model development is a never-ending job. As new
hardware systems and features are developed, support for
those features must be added to test software that uses them.

For future defense system development, requirements must
be placed on hardware developers and providers to provide
virtualized models of their hardware to make security testing
accessible. In the meantime, the industry must seek boutique
virtualization services to provide these models.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Advanced Cyber Testing With Virtualization, Wysocki, et al.

 Page 9 of 10

6.2. Consistent But Flexible Test-Driven
Development Workflow

A virtualized testing infrastructure should be capable of
supporting a diverse range of test scenarios and avoid
confining an end user to a specific set of testing requirements.
Most traditional test infrastructures are highly specialized,
requiring a range of custom equipment and techniques geared
to ensuring the hardware performs within optimal operational
specifications for the parameters provided. For hardware-
centric test environments such as SILs, consideration must be
given for power constraints, boot times, and initial operational
settings that are key to ensuring the results of test runs can be
trusted. Generally, these initial hardware states are dictated
as part of the test plan, and therefore must be built into the
workflow, often as part of some set of manual operating
procedures.

For test-driven development employing virtualization, we
want to aim instead for a consistent workflow that allows
users to quickly build software for their target VM
emulations, mock up tests for these emulations within the test
development platform, and validate their software against the
models as easily as they would on real hardware. Figure 2
illustrates an example test-driven development workflow
starting with model development, progressing through the
analysis phase, and finally feeding back into the actual
deployment after cyber enhancements have been made.

Figure 2. Test-driven development employing virtualization

Virtualized test environments are not necessarily confined

to a strict workflow. The challenge then becomes about the
economics of testing given an infinite potential. How do we
create a solution that is generic enough to be customized and
easily integrated into any existing test environment, while still
being intuitive for the end-user—we have all dealt with
software that traded intrinsic functionality for feature
richness. The virtual testing environment is designed to
support multiple architectures and platforms configurable, on-
demand, from user-defined requirements. The virtual test
development workflow should therefore be flexible enough to
support these disparate test scenarios, but strive to be intuitive
enough for even a novice test writer to get up and running
quickly on the platform.

7. Conclusion
Developing systems hardened against modern cyber threats

is a difficult problem, and developing secure systems
comprising both legacy and modern components has proven
impossible to achieve after-the-fact. The authors have
presented a case for the benefits of employing virtualization
platforms within cyber testing infrastructure to enhance
traditional testing environments. Dual-honed efforts are not
uncommon as entities both private (financial institutions,
education systems, critical infrastructure providers, etc.) and
Federal (DOD, Army, NIH, etc.) seek to rapidly improve their
cyber security posture. These entities will broaden the scope
of the larger, national cyber resiliency campaign.

Our approach focuses on identifying and integrating
dynamic testing tools as early as possible in the software
development lifecycle. We conclude that by implementing a
continuous testing policy and adopting a culture of
DevSecOps, cyber-resilient systems arise as a natural
byproduct—rendering significant gains in system stability
(bugs caught early and often), time factor (faster deployment
of patches), and end-user satisfaction (increased reliability
and usability).

Software developers should have ready access to testing
infrastructure that provides the tools necessary to perform
continuous testing across the software development lifecycle.
By requiring development with integrated testing tools occur
during prototyping, implementation, and testing phases,
developers can generate confidence in their software well
before pre-deployment activities commence. We define this
form of test integration as “Continual Dynamic Analysis”.

A virtualized cyber-testing environment provides a
competent middleware solution for cyber testing that can be
integrated into most legacy development environments. This
approach works well when developers must produce code for
highly specialized, scarce, and mission-critical embedded
systems such as ASICS. Virtualized test environments
enhance the software development process and make it
possible to scale testing vertically, horizontally, and for
systems of systems. This allows developers to run destructive
tests and safely interpose upon system execution in an array
of configurations that would prove far less tractable on
workstation test benches or System Integration Laboratories.

We allude to the future necessary work to improve the
significant upfront costs currently associated with modeling
efforts. The costs include gaining a deep understanding of the
system being emulated, identifying the system, sub-systems,
and components necessary for emulation and debugging the
emulation. These steps can require months of dedicated effort
and a team of experienced engineers. Despite these
challenges, the authors maintain these costs are negligible
compared to the billions of dollars lost when critical systems
have succumbed to cyber threats.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Advanced Cyber Testing With Virtualization, Wysocki, et al.

 Page 10 of 10

8. References
[1] “DOD Enterprise DevSecOps Reference Design,”

Department of Defense Publication, August, 2019.
[2] Ronald S. Ross, Victoria Y. Pillitteri, Richard Graubart,

Deborah Bodeau, Rosalie McQuaid, “Developing Cyber
Resilient Systems: A Systems Security Engineering
Approach,” NIST SP 800-160, Vol. 2, November, 2019.

[3] United States Government Accountability Office,
“Weapon Systems Cybersecurity: DOD Just Beginning to
Grapple with Scale of Vulnerabilities,” October, 2018.

[4] Matthew P. Barrett, “Framework for Improving Critical
Infrastructure Cybersecurity Version 1.1,” in NIST
Cybersecurity Framework, 2018.
https://doi.org/10.6028/NIST.CSWP.04162018.

[5] https://csrc.nist.gov/Projects/ssdf.
[6] Parasoft, “DO-178B/C Compliant Software for Airborne

Systems,”
https://www.parasoft.com/solutions/compliance/do-178.

[7] DOT&E (Director, Operational Test and Evaluation)
FY 2020 Annual Report. 2020.

[8] https://us-cert.cisa.gov/bsi/articles/best-
practices/requirements-engineering/the-common-criteria.

[9] “DOD Cybersecurity Test and Evaluation Guidebook,”
Department of Defense Publication, February, 2020.

[10] Venu Siddapureddy, Nathan Fountain, David Sanders,
Stacy Budzik, “System Integration Laboratory (SIL) is a
Key Tool for Establishing and Testing Systems
Engineering Discipline,” In Proceedings of the Ground
Vehicle Systems Engineering and Technology Symposium
(GVSETS), Dearborn Michigan, August, 2011.

[11] Patrice Godefroid, Michael Y. Levin, David Molnar.
“SAGE: Whitebox Fuzzing for Security Testing,” in
Communications of the ACM, Vol. 55, Number 3, pp 40-
44, March 2012. On-line version in ACM Queue 10(1):20,
January, 2012.

[12] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
Michael Hicks, “Evaluating Fuzz Testing,” in 2018 ACM
SIGSAC Conference on Computer and Communications
Security (CCS ’18), October 15-19, 2018, Toronto.

[13] Richard D. Kuhn, Raghu Kacker, Yu Lei, “Practical
Combinatorial Testing,” in NIST Special Publication, SP
800-142, October, 2010.

	1. Introduction
	2. Background
	2.1. Cyber Resilience
	2.2. Cyber Testing
	2.3. Virtualization

	3. Improving Cyber Resiliency
	3.1. The Cyber Testing Gap
	3.2. Legacy Systems in a Cyber World
	3.3. Virtualization and the Future of Secure System Development

	4. Effective Cyber Testing
	4.1. Cyber-Testing-Driven Requirements
	4.2. Scalability of Virtualization-Based Testing
	4.3. Interposition and Feedback Fuzzing Under Virtualization

	5. Testing System of Systems Under Virtualization
	6. Future Work
	6.1. Reducing Cost of Virtualization
	6.2. Consistent But Flexible Test-Driven Development Workflow

	7. Conclusion
	8. References

