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ABSTRACT 

The growing sophistication and emergence of widespread cyber threats 
today has driven the DOD to place Cyber Resiliency requirements on new and 
legacy defense systems.  The DOD has recently garnered a massive defensive 
DevSecOps effort aimed at defining structured practices to unify software (Dev), 
Security (Sec), and operations (Ops) under the umbrella of more OpSec-driven 
engineering practices.  According to the DOD DevSecOps practicum referenced in 
this document [1], “Practicing DevSecOps provides demonstrable quality and 
security improvements over the traditional software lifecycle, enabling application 
security, secure deployments, and secure operations in close alignment with 
mission objectives.” 

Modern systems often contain greater networking capability and are 
therefore more exposed to cyber-threats.  Legacy systems were often conceived 
prior to the field of cyber warfare maturing, resulting in unpatched potential 
vulnerabilities that could be exploited through trusting computing relationships.  
Each type of system presents different Cyber Resiliency requirement challenges.  
This paper explores the power and flexibility of employing virtualization 
technology as a tool for cyber-focused testing on both new and legacy defense 
systems across the DOD. 
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1. Introduction 

Cyber Resiliency has matured from a passing concern to a 
requirement driver for multitudes of complex defense systems 
across the DOD.  The sophistication of even moderate cyber 
threats today requires targeted, multifaceted solutions to 
address these problems in their entirety.  Unfortunately, the 
development lifecycle, particularly for established legacy 
systems, is often riddled with unforeseen complexities that 
make safe modernization slow and resource intensive.  It has 
become common for developers to extend legacy systems by 
networking them with modern technologies.  By doing so, 
legacy systems have become exposed to modern threats. 

Defense systems are commonly created on specialized 
hardware, making effective cyber testing difficult due to 
limited availability.  System Integration Labs, or SILs, 
perform the bulk of requirements testing today, verifying 
correct software behavior of both hardware and software.  
These SILs are often saturated with tasking during 
development, performing regular gauntlets of validation 
testing.  To complicate matters, cyber testing uses 
techniques that may expose hardware to risk of damage and 
corruption, a risk that many expensive SILs cannot afford.  
Risk aversion and limited availability greatly limit the ability 
to perform effective cyber testing. 
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Virtualization provides numerous benefits that augment 
traditional testing infrastructure.  Traditional infrastructure is 
constrained by the number of physical systems available to 
conduct testing activities.  Tests run on real hardware require 
careful preparation, validation, and sanitation of test pipelines 
at conclusion ensure integrity and consistency of results many 
test cases.  This cycle of testing can be immensely time 
consuming, ultimately limiting the scope, throughput, and 
frequency of tests that can be run within a designated time 
frame.  Virtualization, on the other hand, allows testers and 
developers to recall known good states from an existing 
archive, reducing test times, and ensuring the integrity, 
repeatability and validity of results without the constraints of 
real hardware. 

Virtualization provides data collection and analysis 
opportunities that are impossible on physical hardware.  
Snapshots of a hardware state in a virtual environment can be 
manipulated, deterministically replayed, and analyzed after 
the system has crashed.  Instead of a reviewing a stack traces 
and memory dumps, a full replay of execution can be saved.  
This analysis capability is a boon to developers, accelerating 
error analysis and triage.  Virtualization helps standardize 
these tools and techniques across all virtualized systems, 
enabling reuse across projects and integration with standard 
commercial tools. 

In the following sections, we will describe how 
virtualization can greatly aid in improving cyber resiliency 
across DOD platforms.  It breaks the constraints of physical 
hardware access and eliminates the risk of accidentally 
damaging or corrupting expensive SILs.  It provides greater 
introspective capabilities than hardware and can be integrated 
with industry standard tools.  Virtualization can be a powerful 
tool in the effort to reduce cyber risk in today’s modern 
networked environment. 

 
2. Background 
2.1. Cyber Resilience 

Cyber Resiliency is defined as the ability to 
anticipate, withstand, recover from, and adapt to 
adverse conditions, stresses, attacks or compromises 
on systems that use or are enabled by cyber 
resources.  Systems with this property are 
characterized by having security measures “built in” 
as a foundational part of the architecture and design.  
Moreover, these systems can withstand cyber-
attacks, faults, and failures and can continue to 
operate even in a degraded or debilitated state, 
carrying out mission-essential functions, and 
ensuring that the other aspects of trustworthiness (in 
particular, safety, and information security) are 
preserved [2]. 

Mission-critical systems face an increasing threat from 
persistent malicious actors with considerable resources and 
advanced technologies tailored to discover software 
vulnerabilities.  However, according to the GAO [3], “In 
operational testing, DOD routinely found mission-critical 
cyber vulnerabilities in systems that were under development, 
yet program officials GAO met with believed their systems 
were secure.” This has led DOD to place resiliency 
requirements on new system development and order reviews 
of legacy systems for cyber resiliency. 

Developing cyber-resilient systems requires incorporating 
cyber-testing technologies early in development, not after the 
system has been fielded.  Failing to engage in cyber testing 
during development, when subject matter expertise is at its 
peak, significantly increases resource consumption and task 
difficulty when assessing and mitigating software errors.  
Delaying cyber testing beyond requirement testing, 
integration, and fielding compounds this issue further.  
Legacy systems suffer immensely from insecure development 
conventions due to being conceived prior to modern 
technological trends in networking and connectivity; 
organizations responsible for maintaining these systems often 
struggle to understand their security posture as a result.  
Legacy systems can therefore be regarded as an ideal case 
study for demonstrating the near impossibility of addressing 
security after-the-fact. 

 
2.2. Cyber Testing 

The NIST Cybersecurity framework [4] presents 
foundational principles behind the NIST Secure Software 
Development Framework (SSDF) [5], which provides a 
framework for integrating security requirements into every 
step of software development.  It states that, when software is 
unavailable and must be produced, “[testing] executable code 
to identify vulnerabilities and verify compliance with security 
requirements” shall occur.  The SSDF states projects shall 
“[integrate] dynamic vulnerability testing”, “[use] automated 
fuzz testing”, and “[document] the root cause to each 
discovered issue”. 

Dynamically testing embedded or system-level software 
requires running the compiled software on the target 
hardware, or in a representative example of that hardware (for 
example, developer kits, SIL, or emulator).  Dynamic cyber 
testing, or “fuzzing”, is typically some form of unstructured 
test without a well-defined end-state or testing period.  This 
form of testing fundamentally differs from standard 
requirements testing, as it explicitly attempts to cause 
unintended behavior.  It is extraordinarily difficult to foresee 
emergent properties of complex systems, which is why 
unstructured testing has been effective at discovering 
vulnerabilities even when a system has strict requirements-
based testing. 
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What is not discussed by NIST is the scale and introspection 
capabilities required to perform effective dynamic testing.  
Hardware-based execution environments (developer kits, 
SILs) are not scalable, nor do they provide the introspection 
faculties required to execute effective dynamic testing 
campaigns.  This means existing test infrastructure is ill-
suited to meet new cyber-testing requirements. 

Virtualization provides a clear path to resolve these issues. 
 

2.3. Virtualization 
Virtualization is the creation of a “virtual” representation of 

a system or hardware that can execute software as if it were 
on the real system.  For embedded systems, such as many 
DOD platforms, this involves using an emulator or hypervisor 
to execute system software on desktop or server 
environments.  Virtualization platforms provide three key 
features that real hardware does not. 

First, it provides greater system availability when real 
hardware is expensive, precious, or simply unavailable.  As 
legacy systems age, it is common to experience hardware 
scarcity issues as components cease being manufactured.  
Systems under development often experience hardware 
scarcity issues due to cost of prototypes, manufacturing 
capacity, and the need for SILs.  Virtualization makes 
execution environments available to all developers for testing 
on commodity hardware, such as desktops. 

Second, virtualization technologies provide interposition 
capabilities that are unavailable on real hardware.  This can 
include interposing upon execution for coverage collection 
and intercepting communications between internal 
components.  This additional interposition is often required 
for advanced cyber-testing techniques, such as coverage-
driven fuzzing and dataflow analysis. 

Finally, virtualized systems are scalable.  Scaling embedded 
system hardware for testing represents a severe maintenance 
and cost penalty for programs.  Effective cyber testing 
requires running millions of tests per second, making real 
hardware a poor choice for both cost and practical reasons. 

The following sections discuss how virtualization can be 
leveraged to perform effective cyber testing and achieve 
greater cyber resilience. 

 
3. Improving Cyber Resiliency 

The current state of cyber resiliency for DOD systems has 
been extensively documented.  The GAO report [3] issued in 
October 2018 extensively covers the current state of cyber 
readiness in defense systems, and the root causes of the 
underlying failures. 

Multiple factors contribute to the current state of 
DOD weapon systems cybersecurity, including: the 
increasingly computerized and networked nature of 
DOD weapons, DOD’s past failure to prioritize 

weapon systems cybersecurity, and DOD’s nascent 
understanding of how best to develop more cyber 
secure weapon systems.  Specifically, DOD weapon 
systems are more software and IT dependent and 
more networked than ever before. ... Nevertheless, 
until recently, DOD did not prioritize cybersecurity 
in weapon systems acquisitions [3]. 

There is a growing awareness of the need to standardize 
cybersecurity assessment practices for software products—
much in the same way rigorous security standards currently 
are applied to software deployed on real-time operating 
systems (RTOS) in the avionics and automotive industries. As 
a case study, airborne platforms must now adhere to a set of 
rigorous testing standards defined by the DO-178B/C [6].  A 
growing number of federal certifications and testing standards 
have begun emphasizing security testing as a criterion for 
being awarded prestigious operational compliance levels.  
One such set of standards includes the Common Criteria [7]. 

The Common Criteria enable an objective 
evaluation to validate that a particular product or 
system satisfies a defined set of security 
requirements [8]. 

Recently, there have been notable strides in identifying key 
components for governing more comprehensive system 
cybersecurity assessment and validation activity.  To this aim, 
the DOD has begun to formalize practices for cybersecurity 
testing.  The DOD has outlined these practices in the DOD 
Cybersecurity Test and Evaluation Guidebook (T&E). 

The purpose of this guidebook is to promote data-
driven, mission-impact-based analysis and 
assessment methods for cybersecurity and 
evaluation (T&E), and to support assessment of 
cybersecurity, system cyber survivability, and 
operational resilience within a mission context by 
encouraging planning for tighter integration with 
traditional system T&E [9]. 

 The DOD publishes a yearly Director, Operational Test and 
Evaluation [7] (DOT&E)—a report for Congress providing an 
on-going register of approved operational test plans as part of 
the joint oversight program.  It is evident from the DOT&E 
report that the DOD continues to bolster its defensive posture 
by expanding its list of cybersecurity operational testing 
initiatives. 

Despite these requirements, it remains common to engage 
in cyber testing after development, as opposed to during 
development.  The question is, what is causing this cyber 
testing gap? 

 
3.1. The Cyber Testing Gap 

As noted previously, a critical gap in DOD cyber testing is 
that penetration and vulnerability assessments are not 
performed early enough in the product lifecycle. Many 
programs wait until a formalized test and evaluation (T&E) 
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phase to perform these important tasks—by which time it is 
too late for a developer to refocus efforts on cyber mitigation 
activities. 

Cyber testing employs strategies that differ from traditional 
software development processes but require a similar time 
investment (from design to deployment) that is often not 
factored into the total software lifecycle. Cyber testing is a 
path tailored toward improving cyber resiliency and should 
therefore employ the same tactics an attacker would use to 
compromise a system in the wild. Effective cyber testing 
should be iterative in nature. The DOD Cybersecurity Test 
and Evaluation Guidebook [9] defines a series of phased 
iterations for conducting cybersecurity verification analysis 
of system attack surfaces. 

The goal of cybersecurity T&E is to identify and 
mitigate exploitable system vulnerabilities 
impacting [the] operational resilience of military 
capabilities before system deployment to include 
safety, survivability, and security. Cybersecurity 
T&E Phases 1 and 2 are the essential first steps of 
the T&E planning process that support system 
design and development. Phase 1 and 2 should be 
performed in a cyclic fashion and repeated 
throughout each phase to ensure a thorough 
understanding of the requirements and any changes 
within the attack surface [9]. 

This Cybersecurity T&E Guidebook also highlights the 
importance of engaging cybersecurity professionals at the 
inception of a product lifecycle as a means of understanding 
the scope of threats and mitigation strategies to govern 
subsequent design decisions.  By engaging a cybersecurity 
specialist early, it is easier to generate a custom system profile 
for conducting future cybersecurity audits, ultimately yielding 
more comprehensive and intelligent tests around potentially 
high-risk and critical features of a product. Lack of 
cybersecurity expertise, engagement, and planning during the 
system design phase is another notable gap in many 
development efforts. 

While the need to test may seem obvious, cyber testing 
carries requirements that may appear counterproductive to 
optimal system development in a traditional environment.  
Cyber testing increases use of scarce and expensive 
laboratory resources, and may represent a destructive risk. 

With constrained hardware resources, testing becomes a 
burden to developers, increasing development time and cost.  
When dependent on a SIL, trade-offs are made to balance time 
and effort spent in functional testing versus cyber testing due 
to hardware scarcity.  These trade-offs widen the cyber testing 
gap.  It is simply impractical to achieve scaled testing for 
embedded systems with real hardware, and this puts cutting-
edge cyber testing techniques out of reach. 

Destructive testing is a software assessment method that 
involves purposefully interacting with a system using 

malformed inputs with the intent of discovering errors or 
failure states.  In some cases, destructive testing carries the 
very probable risk of permanently damaging a target system 
or hardware.  This risk is often unacceptable in cases where 
hardware resources are constrained. 

To achieve effective cyber testing during system 
development, we must solve the problems of execution 
environment availability, enable testing at scale, and make 
offensive vulnerability research methods accessible to system 
developers.  This is exceptionally difficult for legacy systems. 

 
3.2. Legacy Systems in a Cyber World 

There are two classes of systems struggling with cyber 
security requirements today, fielded (legacy) systems and 
systems under active development.  Legacy systems may date 
back many decades, before the birth of cyber security as a 
professional field.  Many of these systems were developed 
without security requirements and have significant flaws ripe 
for exploitation by a malicious actor.  Legacy systems 
undergoing cyber testing have traditionally done so after 
deployment. 

The question is: how do we test legacy embedded systems 
whose hardware is no longer manufactured (or is otherwise 
unavailable) and/or does not scale?  As we discuss in 
section 4, cyber testing requires significant scale and 
interposition capabilities, neither of which may be possible 
with legacy hardware.  By creating virtual representations of 
these embedded devices, we circumvent the issue of hardware 
availability, making the device available at any required scale 
(desktop, range, cloud, etc.). 

This solution alone, however, is not a silver bullet.  
Emulations are expensive to produce, and the cost must be 
weighed against the expected lifetime of the underlying 
system.  This is especially true of legacy systems, whose 
schematics and source code may be inaccessible.  If the 
system is scheduled for replacement soon, it may be more cost 
effective to increase monitoring rather than spend a year 
creating a virtualization.  We discuss this challenge in 
section 6.1 (Reducing Cost of Virtualization). 

 
3.3. Virtualization and the Future of Secure 

System Development 
Embedded system developers often lack sufficient 

execution environments to execute the requirement, 
compliance, and security testing needed to truly assess a 
platform’s security posture.  These developers rely heavily on 
non-representative environments, such as cross-compiling 
software for desktop environments.  While cross-compilation 
may satisfy functional testing requirements, it may miss bugs 
related to the production architecture and hardware. 

In some cases, developers may have access to hardware 
developer kits (HDK) or SILs.  When HDKs are available, 
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testing may occur at the desktop scale, but not at an acceptable 
scale for security testing.  SILs compound this limitation, 
forcing many developers to share access to common hardware 
for requirements testing.  However, SIL test environments 
will never be completely displaced by virtualization.  
Siddapureddy [10] explains why many testing requirements 
demand extremely accurate simulation and structural 
requirements to determine the survivability of a system in 
adverse operational conditions.  This paper therefore 
constrains its discussion of SIL test engineering to aspects of 
software assurance testing and is not suggesting replacement 
of SILs with virtualization platforms. 

 Leveraging virtualization in the early phases of system 
development serves as a major force multiplier, both for 
velocity of system development and for cyber resiliency 
requirements.  Virtualization makes embedded systems 
available at the desktop for rapid and scaled test development.  
This provides developers the chance to build fuzz testing 
frameworks when key resources, such as system experts, are 
readily available. 

In the following section, we discuss why this type of 
desktop and scaled availability is critical for test development. 

 
4. Effective Cyber Testing 

Threat actors are constantly seeking new attack surfaces and 
vulnerabilities.  Every component that communicates with 
external systems represents a risk, as it provides a way for 
external actors to affect internal operation.  These actors often 
leverage fuzzing as a way of exploring attack surfaces and 
discovering vulnerabilities, in hopes of providing access 
vectors for their attacks. 

Ransomware, for example, requires system access to 
perform its attack.  In recent years, attackers have leveraged 
ransomware to attack financial institutions, government 
entities, educational systems, and critical infrastructure.  
Without a system access vector, these attacks would be 
difficult to execute.  While many attacks use access vectors 
such as phishing, more sophisticated actors may use 
undisclosed (zero-day) code execution and privilege 
escalation vulnerabilities to achieve system access.  It is 
exactly these types of vulnerabilities developers should 
defensively fuzz for during development. 

Defensive fuzzing is a proven method that industry leaders 
such as Microsoft are using to secure their software.  SAGE, 
a tool that uses fuzzing at scale, has proven results.  SAGE 
found approximately one-third of all the bugs discovered by 
file fuzzing during the development of Microsoft’s 
Windows 7.  Finding these bugs has saved Microsoft millions 
of dollars, and has saved the world time and energy by 
avoiding expensive security patches to more than one billion 
PCs [11].  Fuzzing remains one of the most effective tools in 
the vulnerability researcher’s toolkit for assessing the 

approximate stability and engineering quality of a piece of 
software. 

 
4.1. Cyber-Testing-Driven Requirements 

Fuzzing is the act of randomly (or pseudo-randomly) 
exploring the state of a program with generated input (as 
opposed to known or structured input).  Fuzzers require 
significant scale (millions of tests per second) and feedback 
(code coverage data) to be effective.  American Fuzzy Lop 
(AFL), for example, uses compile-time coverage faculties for 
some software, and can use a special emulator mode that is 
compatible with QEMU.  AFL has been used across the 
industry for dynamic security testing and is considered one of 
many industry-standard tools. 

If we are to apply fuzzing techniques during embedded 
system development, new requirements must be placed on the 
overall development process.  These requirements are derived 
from common fuzzing methods and industry standard fuzzing 
frameworks.  The most common problem with applying 
industry standard tooling is availability of the underlying 
execution environment. 

While AFL can be used with QEMU (an open-source 
emulator), there is no central team or company responsible for 
providing developers a QEMU emulator for their platform.  
To complicate the matter, the open-source community is often 
wary of working with government-adjacent entities. 

In addition, while commodity hardware, such as x86, may 
have extremely robust onboard hardware-based virtualization 
and introspection faculties, embedded systems (often ARM-, 
PPC-, or MIPs-based) simply do not.  Lacking these faculties, 
tooling becomes dependent on whatever emulator is 
available—and most simply do not implement the 
introspective capabilities required to meet cyber testing 
needs. 

From this, we derive three major requirements for a 
virtualization platform truly suitable for cyber-focused 
testing.  First, it must by scalable.  Second, it must provide 
sufficient introspection.  Finally, maintenance must be offered 
as a service, as opposed to being reliant on open-source 
communities. 

 
4.2. Scalability of Virtualization-Based 

Testing 
We define scaled testing in three ways: 
• Horizontal Scale – Testing code across many system 

configurations. 
• Vertical Scale – Testing code across many inputs or 

interactions. 
• Distributed Scale – Testing distributed computations 

dependent on many components. 
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In this section we discuss how virtualization can enable each 
form of testing. 

 
Horizontal Scale 

Effective testing requires validating software requirements 
and behavior on a wide array of hardware and software 
configurations.  For example, a cell phone application may 
not display identically on two separate phones with different 
screen sizes.  When stakes are low, as is the case with phone 
applications, cursory testing across a small sample of the 
many different configurations may suffice. 

When stakes are high, as is the case with defense system 
development, the number of hardware and/or software 
configurations may be overwhelming to test.  Attempts to test 
all possible runtime configurations is an oppressive 
requirement and may negatively impact vertical scale testing 
efforts. 

Virtualization makes extensive horizontal testing possible 
by alleviating hardware availability concerns, and by 
reducing the time it takes to reconfigure a system under test.  
For example, reconfiguring a system may simply involve 
loading a saved state, as opposed to requiring a full hardware 
reboot. 

 
Vertical Scale 

Effective fuzzing campaigns can require execution 
performance in terms of millions of tests per second.  
According to Wei Shiyi [12], on evaluating fuzz testing, “the 
ultimate measure of a fuzzer is the number of distinct bugs 
that it finds.” Some campaigns may require billions of tests in 
total to identify just a single vulnerability.  Hardware-based 
developer kits and SILs simply cannot support this level of 
vertical scaling.  Figure 1 shows a chart generated from a real 
fuzzing campaign run against a virtualized flight system 
interface that plots the number of tests run and crashes 
discovered. 

 
Figure 1. Virtualized flight system fuzz test crash report 

 
Each test may require the system be fully reset to a known-

good state.  Hardware can often take minutes to fully restart—
greatly limiting test throughput.  In this case, a one-minute 
restart cycle would have caused this fuzz campaign to have 
taken nearly 1000 hours.  Instead, executing the tests serially 

on one piece of hardware, rather than in parallel on many, 
took only 35 minutes.  Acquisition of hardware to achieve 
sufficient vertical scale is simply infeasible due to cost, 
availability, and difficulty of maintaining such a hugely 
complex laboratory environment. 

As previously discussed, lacking a representative execution 
environment at the desktop limits a developer’s ability to 
design and execute scalable unstructured test plans.  
Virtualization can be deployed at the desktop for test 
development, and to cloud infrastructure for vertical 
scaling—limited only by the availability of commodity 
hardware and server rack space. 

 
Distributed Scale 

Modern electronic devices are often complex systems of 
systems with many discrete compute elements working in 
parallel to accomplish a goal.  Cell phones integrate many 
commodity components and co-processors to achieve 
asynchronous computation of data from many external 
sources (for example, cell tower, Wi-Fi, and touch screen).  
Similarly, embedded systems often contain an array of co-
processors responsible for computing discrete tasks.  A fighter 
jet may have one computer for the cockpit display, another for 
GPS navigation, and yet more to control weapons systems. 

It has become increasingly common for those components 
to be highly reliant on each other, distributing tasks and 
executive controls to discrete components of the system of 
systems.  This is good for redundancy and reliability but 
makes effective dynamic testing outside a SIL extraordinarily 
difficult.  To independently develop these subsystems, 
developers often produce low-fidelity simulators of missing 
components—such as scripts that simply replay captured 
traffic rather than emulate the real behavior. 

Low-fidelity simulators lack the ability to replicate true 
real-world situations, and as a result, effective horizontal 
scale testing of an individual component becomes infeasible. 
A virtualized system allows components to be initialized 
realistically, providing developers an environment to produce 
meaningful test results. 

This topic will be further discussed in section 5 (Testing 
System of Systems Under Virtualization). 

 
4.3. Interposition and Feedback Fuzzing 

Under Virtualization 
Most secure development frameworks do not specifically 

address how to design or run effective fuzz tests.  Even the 
NIST SSDF remains vague regarding the definition of 
“effective dynamic testing”.  The NIST Information Security 
guide on Practical Combinatorial Testing [13] comes closest 
to presenting a comprehensive discussion using the 
combinatorial testing strategy. 
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Fuzzing can be considered a class of combinatorial testing 
that exercises boundary conditions using random inputs.  
“The key advantage of combinatorial testing derives from the 
fact that all, or nearly all, software failures appear to involve 
interactions of only a few [predictable] parameters.” [13] 

Most secure development frameworks are not designed to 
be comprehensive one-size-fits-all Swiss army knives.  Most 
frameworks are geared to solving a very narrow and 
specialized subset of cases within a problem space, or even 
more disappointingly, simply include a requirement to “use 
fuzz testing”.  In this section we explore what interposition is 
required to achieve effective fuzz testing. 

 
Interposition 

System interposition is the ability to intervene on a given 
computational task.  For example, software-based code 
coverage systems inject routines at the beginning of each sub-
routine in a piece of software.  Hardware-based coverage is 
accomplished via hardware side channels that detect and 
record program state-transitions. 

Many developer kits provide some level of introspection 
capability (such as basic debugging tools), but rarely provide 
the flexible runtime introspection tools required to leverage 
most modern vulnerability analysis techniques. 

Virtualization platforms provide a solution to this problem, 
because introspection can be baked into the virtualized model 
software.  Emulators translate instructions from one ISA to 
another (for example, PPC to X86).  During this translation 
process, the emulator may inject additional machine code, 
which fuzzers can leverage to provide feedback in the form of 
code coverage and data-flow tracking.  Despite emulation 
running slower than real hardware, emulations can be scaled 
to deliver a non-linear increase in overall test throughput. 

 
Code Coverage 

Many safety-critical embedded systems must meet 
government certification and compliance testing standards.  
To achieve certification, testing must generate artifacts that 
prove the system conforms to the standards.  One certification 
requirement dictates that all code must execute and behave 
according to a well-defined test plan.  In other words, the 
artifacts must show complete code coverage. 

Many test efforts entail developing custom branch trace 
instrumentation to generate these coverage artifacts.  Using 
instrumented builds for testing presents many risks and 
disadvantages in practical applications, however.  
Instrumentation causes significant overhead, often 
contributing to unnecessary program bloat to the extent that 
hardware-based tests fail to execute or run to completion—
ultimately decreasing confidence in the integrity of the 
results. 

In addition, instrumentation may result in code execution 
bottlenecks, slow-downs, or race conditions that interrupt 

normal operation not otherwise present on non-instrumented 
builds.  For real-time embedded systems, timing concerns can 
affect the stability and health of a system.  Without reliable 
normal operation, test results become unreliable. 

Virtualization-based execution environments can provide 
flexible branch tracing systems that can be tailored to achieve 
the best performance-introspection dynamic possible.  Many 
virtualization platforms, such as QEMU and DejaVM, 
provide an instruction instrumentation framework that 
developers can apply in a more flexible and robust manner 
than hardware-provided faculties.  In addition, a virtual 
platform can control the perception of time by software and 
can omit the overhead caused by code coverage faculties from 
its view.  This level of control delivers both the introspection 
and stability required to ensure the integrity of test results. 

 
Feedback Fuzzing 

Most industry-standard fuzzers define “feedback” as some 
form of execution-state information associated with a 
particular system input.  Branch tracing is one of the primary 
feedback data sources used by fuzzers.  This information 
associates input mutation with program flow deviations.  
Embedded hardware rarely provides robust branch tracing 
capabilities, and commodity hardware tracing faculties often 
come with severe limitations that prevent vertical scalability. 

Some virtualization platforms provide coverage systems 
that can greatly simplify code coverage collection for fuzz 
testing campaigns.  Rather than running instrumented builds 
for collection, code coverage is collected dynamically using 
non-instrumented binary artifacts.  This eliminates significant 
resource expenditure by development and test teams. 

Most hardware-based coverage systems (such as Intel PT) 
are not capable of providing runtime feedback for analysis 
during execution.  The output must be consumed after the test 
is completed.  Some advanced feedback fuzzing techniques 
require runtime analysis, making hardware faculties 
unsuitable for use.  Emulation-based virtualization platforms, 
however, can provide flexible tracing feedback based on the 
fuzzer’s requirements. 

To be effective at fuzzing, we therefore require a flexible 
virtualization system that provides a flexible interposition-
performance configuration.  This allows testers to achieve the 
greatest feedback generation and vertical scaling possible. 

 
5. Testing System of Systems Under 
Virtualization 

Expanding cyber resiliency for most relevant DOD 
platforms requires the ability to connect multiple virtual 
devices together into a system of systems (SoS) configuration.  
Traditional integration testing occurs in SILs, and is a critical 
part of the development lifecycle.  SIL resources are 
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constrained, comprising primarily physical hardware 
connected via control software. 

For any test plan to leverage virtualization, it must be 
possible to duplicate SIL configurations within a virtual 
environment.  This may involve modeling some or all 
portions of the system in software to replicate system 
functionality.  Configuration management is also a challenge 
in physical SILs.  Systems must be restored to known good 
states and may require multiple configurations to adequately 
support testing across the different software versions. 

Under virtualization, SoS configuration becomes more 
manageable.  Each relevant set of configurations may be 
saved and recalled without a complete restart of the system.  
Each different configuration can then be loaded as needed, 
and testing of each configuration may even occur 
concurrently.  This reduces test plan complexity, system 
maintenance, and the amount of resources consumed 
managing, modifying, and synchronizing configurations 
across various subsystems prior to staging new tests. 

When dealing with SoS configurations, shared state 
awareness can be valuable for debugging issues.  With 
traditional emulators, leveraging introspection features on a 
single system within a tightly synchronized environment can 
create undesirable side effects.  For example, pausing an 
embedded device to debug a software issue without proper 
regard for system watchdog timers can result in the device 
perceiving an error state and timing out prematurely. 

In traditional hardware development, you would need to 
periodically reset a watchdog timer to allow the embedded 
system to continue normally.  A virtualized SoS environment 
may provide a solution for this problem by controlling all 
participating virtual machines (VMs) at once.  Under such a 
virtualized environment, pausing any one VM within the 
system context pauses the entire SoS—retaining a 
synchronized state. 

By virtue of having global command and control of a cluster 
of synchronized VMs, a virtualized SoS makes it possible to 
extend other advanced debugging capabilities to all VMs.  For 
example, it becomes possible to extend deterministic replay 
to a networked system of systems.  This enables analysts to 
quickly explore divergent states or easily follow data as it 
travels through the system of systems. 

In a real-world application, a virtual SIL could be used to 
more effectively scale testing scenarios for various iterations 
of firmware across a series of target platforms.  In the case of 
a vehicular system, for example, each primary component of 
the system capable of processing software instructions and 
affecting the system state would be modeled according to a 
set of technical specifications regarding the hardware and 
how the hardware interacts with the software and any 
dependent systems.  The firmware would then be extracted 
from the actual system and used as a guide for refining the 
model and identifying any critical functionality that must be 

modeled from the original system to ensure a measure of 
operational fidelity.  A test plan for the model would be 
adapted from the system test plan and requirements tests.  The 
model would then be subjected to a battery of code coverage 
tests in the virtual environment to exercise all critical 
functions on the platform.  The results of these tests would 
then be evaluated against a pre-existing set of “known good” 
results logged from actual systems with repeatable “known 
good” states.  This process would ultimately be used as a 
validity baseline for proving the behavior of the model itself. 

The expectation is that models developed for a virtual SIL 
are capable of running at instruction-level accuracy and are 
guaranteed to produce the same expected results as an actual 
well-behaved system given an identical set of data inputs.  As 
a proof of concept, cybersecurity engineers have successfully 
developed a virtual SIL for exercising the behaviors of 
primary flight display (PFD) components as part of a flight 
system.  As a test, engineers were able to validate correctness 
of the model by composing a series unit tests to exercise 
functionality and verifying the results against data outputs 
from an actual PFD system. 

 
6. Future Work 
6.1. Reducing Cost of Virtualization 

Developing emulators is a difficult task that requires 
hardware knowledge uncommon among most software 
development teams.  Writing new emulators requires a 
dedicated team that is familiar with CPU architecture, drivers, 
reverse engineering, and communication protocols.  
Advancements are needed to reduce the upfront cost of 
emulation and to make emulators more accessible for typical 
development teams. 

It is certainly possible to apply machine-learning techniques 
to emulation model development.  However, the platform on 
which the models would be build would need to support 
complex machine learning (ML) algorithms, allowing the ML 
system to modify system configurations to find configurations 
that correctly execute the target software. 

The size and complexity of the emulated model library also 
impacts the cost of modeling.  As additional systems and 
system components are developed, those components can be 
reused across new models.  As the corpus of models increases, 
the cost to produce new models decreases.  Additionally, 
virtual model development is a never-ending job.  As new 
hardware systems and features are developed, support for 
those features must be added to test software that uses them. 

For future defense system development, requirements must 
be placed on hardware developers and providers to provide 
virtualized models of their hardware to make security testing 
accessible.  In the meantime, the industry must seek boutique 
virtualization services to provide these models. 
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6.2. Consistent But Flexible Test-Driven 
Development Workflow 

A virtualized testing infrastructure should be capable of 
supporting a diverse range of test scenarios and avoid 
confining an end user to a specific set of testing requirements.  
Most traditional test infrastructures are highly specialized, 
requiring a range of custom equipment and techniques geared 
to ensuring the hardware performs within optimal operational 
specifications for the parameters provided.  For hardware-
centric test environments such as SILs, consideration must be 
given for power constraints, boot times, and initial operational 
settings that are key to ensuring the results of test runs can be 
trusted.  Generally, these initial hardware states are dictated 
as part of the test plan, and therefore must be built into the 
workflow, often as part of some set of manual operating 
procedures. 

For test-driven development employing virtualization, we 
want to aim instead for a consistent workflow that allows 
users to quickly build software for their target VM 
emulations, mock up tests for these emulations within the test 
development platform, and validate their software against the 
models as easily as they would on real hardware.  Figure 2 
illustrates an example test-driven development workflow 
starting with model development, progressing through the 
analysis phase, and finally feeding back into the actual 
deployment after cyber enhancements have been made. 

 

 
Figure 2. Test-driven development employing virtualization 

 
Virtualized test environments are not necessarily confined 

to a strict workflow.  The challenge then becomes about the 
economics of testing given an infinite potential.  How do we 
create a solution that is generic enough to be customized and 
easily integrated into any existing test environment, while still 
being intuitive for the end-user—we have all dealt with 
software that traded intrinsic functionality for feature 
richness.  The virtual testing environment is designed to 
support multiple architectures and platforms configurable, on-
demand, from user-defined requirements.  The virtual test 
development workflow should therefore be flexible enough to 
support these disparate test scenarios, but strive to be intuitive 
enough for even a novice test writer to get up and running 
quickly on the platform. 

 

7. Conclusion 
Developing systems hardened against modern cyber threats 

is a difficult problem, and developing secure systems 
comprising both legacy and modern components has proven 
impossible to achieve after-the-fact.  The authors have 
presented a case for the benefits of employing virtualization 
platforms within cyber testing infrastructure to enhance 
traditional testing environments.  Dual-honed efforts are not 
uncommon as entities both private (financial institutions, 
education systems, critical infrastructure providers, etc.) and 
Federal (DOD, Army, NIH, etc.) seek to rapidly improve their 
cyber security posture.  These entities will broaden the scope 
of the larger, national cyber resiliency campaign. 

Our approach focuses on identifying and integrating 
dynamic testing tools as early as possible in the software 
development lifecycle.  We conclude that by implementing a 
continuous testing policy and adopting a culture of 
DevSecOps, cyber-resilient systems arise as a natural 
byproduct—rendering significant gains in system stability 
(bugs caught early and often), time factor (faster deployment 
of patches), and end-user satisfaction (increased reliability 
and usability). 

Software developers should have ready access to testing 
infrastructure that provides the tools necessary to perform 
continuous testing across the software development lifecycle.  
By requiring development with integrated testing tools occur 
during prototyping, implementation, and testing phases, 
developers can generate confidence in their software well 
before pre-deployment activities commence.  We define this 
form of test integration as “Continual Dynamic Analysis”. 

A virtualized cyber-testing environment provides a 
competent middleware solution for cyber testing that can be 
integrated into most legacy development environments.  This 
approach works well when developers must produce code for 
highly specialized, scarce, and mission-critical embedded 
systems such as ASICS.  Virtualized test environments 
enhance the software development process and make it 
possible to scale testing vertically, horizontally, and for 
systems of systems.  This allows developers to run destructive 
tests and safely interpose upon system execution in an array 
of configurations that would prove far less tractable on 
workstation test benches or System Integration Laboratories. 

We allude to the future necessary work to improve the 
significant upfront costs currently associated with modeling 
efforts.  The costs include gaining a deep understanding of the 
system being emulated, identifying the system, sub-systems, 
and components necessary for emulation and debugging the 
emulation.  These steps can require months of dedicated effort 
and a team of experienced engineers.  Despite these 
challenges, the authors maintain these costs are negligible 
compared to the billions of dollars lost when critical systems 
have succumbed to cyber threats. 
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